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On direct sequential analysis of heart rate variability signals

Dragana Bajiæ1, Tatjana Lonèar-Turukalo1, Olijandra ©ibareviæ2

ABSTRACT

Heart rate variability analysis represents one of the most promising and the most commonly used quan-
titative measures of the cardiovascular autonomic regulatory system. The analysis includes traditional
statistical analytical tools and a number of new methods based on nonlinear system theory, recently
developed to give better insight into complex HR. This paper introduces a direct sequential analysis.
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INTRODUCTION 

Heart rate variability (HRV) has become the conventionally accepted term to describe vari-
ations of interval between consecutive heartbeats, as well as the oscillations between con-
secutive instantaneous heart rates. It represents one of the most promising and the most
commonly used quantitative measures of the cardiovascular autonomic regulatory system.
The analysis include traditional statistical analytical tools both in time and spectral domain
and a number of new methods based on nonlinear system theory, recently developed to
give better insight into complex HR dynamics, such as fractal correlation properties, the
slope of the power law relation and approximate entropy (ApEn). These methods might
reveal malign abnormalities at early stage that may not be uncovered by traditional meas-
ures. However, the significance and meaning of these different measures of HRV are more
complex than generally appreciated, and there is a potential for incorrect conclusions and
for excessive or unfounded extrapolations. Besides, in spite of general opinion that HRV
time series is easy to obtain, visual inspection and careful manual editing after automatic
extraction is absolutely necessary. For 24 hours' Holter signal it presents a cumbersome
task [1-4].

This paper discusses the possibility of application of a recently developed direct sequential

analysis to HRV signals, based upon the sequence matching. The subsequent section gives
a brief review of some other methods based upon a template (sequence) matching, with
illustrative examples. The third section gives a theoretical approach to the new direct
sequence evaluations. The method is illustrated using analog ECG Holter signals of clinically
healthy children recorded at Children's hospital (Tirsova) are digitalized and HRV extracted
at Faculty of Technical Sciences, Novi Sad. A part of one HRV signal (in beats per minute,
BPM) is shown in Fig. 1.

SEQUENCES AND TEMPLATES
The HRV signal samples form a vector of length Ls, denoted by y = [y(j)], j=1,...,LS. An
analytical approach based upon the sequence (template) matching tries to unveil if the sim-
ilar set of samples is followed by other similar set of samples. Therefore, a "sequence" (or
a "template" of length N is defined as a short vector xN(i) = [y(i+k-1)], k = 1,...,N,
i=1,...,LS-N+1 that is a part of a long time series. For each pair of sequences a distance
d(xN(i), xN(j)), i,j=1,...,LS-N+1 is defined. It can be maximal absolute distance, mean
square distance or any other distance suitable for the current investigation.

Approximate entropy and its modifications
ApEn can be defined as a "regularity statistic" that quantifies the unpredictability of fluctua-
tions in a time series. Intuitively, one may reason that the presence of repetitive patterns of
fluctuation in a time series renders it more predictable than a time series in which such pat-
terns are absent. A time series containing many repetitive patterns has a relatively small
ApEn; a less predictable (i.e., more complex) process has a higher ApEn. Therefore, ApEn
estimates likelihood that patterns of certain length that are close one to another would
remain close if the pattern length increases. The procedure for its evaluation from a time
series y is simple: number of N-tuples (and N+1-tuples) for which d(xN(i),xN(j)),
i,j=1,...,LS-N+1 is within a specified distance r are counted an processed:

(1)Figure 1. Sample of HRV time series
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where estimates the probability that any sequence xN(j) is within a distance r from the tem-
plate xN(i). Then the approximate entropy can be estimated as:

(2) 

Sets of ApEn curves, as well as sets of curves that correspond to its modification (an unbi-
ased one (SampEn) [4] and sliding window-by-window approach [5]) are shown in Figures
2-4. 

Correlation dimension approach - DC

Correlation dimension estimates fractal dimension of an attractor from a time series. An
attractor dimension itself shows a statistical measure of the self-similarity of the geometry
of the sets of points in the phase space, i.e. the number of degrees of freedom necessary
to describe a process. In our case, each sequence (N-tuple) is a point in an N-dimension-
al phase space. 
DC is estimated from a time series using the correlation integral CN(r) that measures the
number of points correlated with each other in a sphere of radius r around the point xN(i)
[6]:

(3)

This quantity is similar to probability estimate (Eq (1)). The differences are a) triangular
rather than rectangular summation; b) squared instead of max. absolute distance; and c)

for an ApEn approach, standard deviation of each separate signal is used as a scaling fac-
tor for r. 

The correlation dimension is evaluated as:

(4)
Its value can be obtained by plotting ld(CN(r)) vs. ld(r). The slope of the resulting straight
lines, for different N, tends to constant value DC, as explained in [6]. 
The DC analysis is closely related to multifractal property of HRV signal. Contrary to the
monofractal signals that are homogeneous, multifractal signals can be decomposed into
many subsets. The statistical properties of the different subsets are characterized by local
Hurst exponents h that shows the local singular behavior and can be quantified by the func-
tion D(h) - fractal dimension of the subset of the time series [7].

Illustrative examples and a note on stationarity
As previously mentioned, HRV time-series are obtained from the children's ECG, known to
be extremely non-stationary and mutually different. Our sample signals were no different;
yet, the children's cardiologist claims all of them to be healthy [Dr med. sci. Nina ®igon:
consultations]. After the HRV extraction, a cumbersome task of visual inspection of all time
series was performed, to correct the 5% errors that software for extraction makes. At last,
from each 24h signals two 15 min HRV sub-series were chosen, the ones that seemed (by
mere visual inspection) to be stationary. To verify the assumption, a stationarity test is per-
formed [8].
Each HRV series is divided into K intervals. For each interval a mean value mi and variance
s2

i are estimated, i = 1,...,K. Then the following sums are evaluated, both for mi and s2
i:

(5)

The acceptance region for the stationarity hypothesis at an a level of significance was con-
sidered done by:

The corresponding border values AK;1-a/2 and  AK;a/2 are obtained from discrete distribu-
tion function:

Pr{A=i}, i=0,...,Ká(K-1)/2 (6)

This probability can be obtained knowing that probability that exactly b elements exceeds the
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Figure 2. Approximate entropy for child "L"

Figure 3. Sample entropy for child "L"

Figure 4. Sliding entropy for child "L"
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value of (K-n)th element, given that m elements in total exceeds the value of (K-n)th one:

(7)

(8)

Although the series were chosen to be, according to the visual inspection, "the most sta-
tionary ones", only 5 of them passed both tests with a=0.05 level of significance.
Figure 5 shows the correlation dimension - dashed lines for non-stationary series. It is inter-
esting to note that it was not possible to extract DC - neither automatically, nor manually,
for one subject. Fractal dimension, again with dashed lines representing the non-stationary

data, is shown in Fig. 6. Thick lines show the examples that fits the best and the worst the
stationarity hypothesis. 
It is known that children's HR is extremely variable. From the above figures no conclusions
can be done. The fact that the children are healthy is according to the children's cardiolo-
gist opinion.

DIRECT SEQUENTIAL ANALYSIS
Direct sequential analysis deals with the analysis of time parameters of the observed sig-
nals - the expected value of time units (number of samples) between the predefined set of
M sequences (templates), and expected number of time units from the random starting
position until one of the predefined M sequences is found. The first time distance is of the
first type, the other one of the second type. The set of M sequences (templates) under con-
sideration are the ones that match a certain criterion. For introductory explanation of this
new analytical approach, the criterion for forming the sequence set would be the criterion
of "smoothness" - the expected number of "rough" samples between the "smooth" intervals.

Time parameters and empirical series
Suppose that the HRV signal is shown in Fig. 7 and the smooth intervals are the ones for
which the absolute value of sample do not exceed certain level. 

"Smooth" sequence of length N is the one that does not contain more than L excursions
beyond this specified level. If L is the number of allowed excursions, there would be exact-
ly M different types of predefined sequences: 

(9)

Similarly to (1) and (3), it is defined

(10)

and

(11)

Then a sample time span between "smooth" intervals can be obtained as:

(12)

for the time distance of the first type, and for the time distance of the second type, the same
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Figure 5. Correlation dimension Dc

Figure 6. Fractal dimension D(h)

Figure 7. HRV signal, "smooth regions" and binary signal
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sample time would be: 

(13)

Averaging the sample times does the estimate of the corresponding mean times. If imax is
the position of the last "smooth" interval within the time series, and 

(14)

number of "smooth" intervals, then the corresponding estimates of mean times of type 1
and 2 are:

(15)

(16)

Theoretical approach
The equations (15) and (16) might be just another set of measures that could be extracted
from an empirical series and compared to the artificially generated data stream. However,
values of time distance can be obtained theoretically, given that the estimate of probability
that the sample of time series would exceed the specific border. It would be equivalent to
generating the binary series from HRV data in a following way:

(17)

The estimate of the probability of "rough" sample in HRV series, i.e. the probability of one
in binary series is:

(18)

In order to derive analytically the expected value of time distance of the first type, a set if M
sequences are described using two recently introduced terms. The first one is a set of
cross-bifix indicators, and the second one is the set of tails [9-14]. 
A cross-bifix is a subsequence of length n²N that is a suffix of ith sequence and a prefix of
jth sequence, i,j=1,...,M. The corresponding cross-bifix indicator  equals to 1 if cross-bifix
of length n exists, e.g. binary sequences Pi=0001 and Pj=0011 have a 3-bit cross-bifix,
while obviously. If i=j,  denotes classical bifix indicator  introduced in [12]. The default val-
ues for cross-bifix indicators are:

(19)

A tail  is a suffix of length n of a sequence no. j. Its value equals to a product of probabili-
ties of the last n symbols of a sequence. By default, and a tail of length N equals to the
probability of a sequence itself. 
The expected value of number of tests necessary to find one of the specified M sequences
equals to:

(20)

Terms Ci depend upon the cross-bifix indicators and upon the tails:

(21)

Terms Si can be evaluated by solving a set of M linear equations: 

(22)

Considering the expected value of type 2-time distance, it could be evaluated using the
state-transition diagram and first passage time evaluation method described in [15,16]. If
N=4 and L=1, the state-transition diagram with the corresponding state-transition matrix
P is shown in Figure 8. States with 0 and 1 ones are "smooth" states. The probabilities a0
and a1 are the conditional probabilities that, if the search has started from the smooth state,
it would be a state with 0 (1) ones:

(23)

The total number of states in Figure 8 is S=2N+M. The first M states are start states, the
last M ones are ending states, and the remaining ones are transient states. The correspon-
ding state selection probabilities p = [p1 p2 p3 ... pS-2 pS-1 pS] can be obtained by solv-
ing a set of equations p × P= p, with the constraint: 

(24)

The expected value of type 2-time distance equals to 

(25)

EXAMPLES AND DISCUSSION
For an illustrative example, some results for subject C2 are shown in Figure 10. Distance r
is, through this investigation, normalized by standard deviation (the same as suggested for
ApEn approach). Both the theoretical results and the results of empirical series are plotted.
Distance values for measured data are constrained by series length LS: if its value is, e.g.,
3000, then mean value cannot be greater.
In Figure 11 the measured and theoretical data of type 1 time distance are compared. The
figures plot

(26)

Difference of 100% is obtained in cases when the theoretical value for time distance
exceeds the length of time series. Most of the subjects had a ppositive  relative error (26).
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Figure 8. State transition matrix and diagram for N = 4 and L = 1; transitions from end to start states
are not drawn for the sake of clarity
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i.e. empirical values of mean time necessary to reach the smooth region are shorter for
empirical sequences.
Figure 12 compares theoretical and measured values of type 2-time distance, plotting the
values

(27)

The measured data are in perfect accordance with the theoretical ones (this was not the
case with time of type 1). The only exception is subject D1, who possess some other inter-
esting properties: it was not possible to extract the correlation dimension, neither automat-
ically nor manually. Besides, its value for distance type 1 has an interesting shape, a shown
in Figure 9.

The results are promising, although no firm conclusion can be made: the children's data are
variable and there was neither diagnosis, nor a medicine applied, influence of which could
be observed within our data. Therefore, future investigation would be based either upon
patients (adults) with applied treatment, or, which are more probable, laboratory rats. 
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Figure 10. Time values, theoretical and empirical - Subject C1
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Figure 11. Examples of fistance type 1 - analytical vs. emprical values

Figure 12. Examples of distance type 2 - analytical vs. emprical values




