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INTRODUCTION
The earliest research in the antineoplastic drug discovery was related to 
suppressing the synthesis and function of DNA. Today, a variety of other 
targets is under intensive investigation and they will provide oncologist 
with significant new approaches of therapy. Some of these approaches 
are inhibition of protease involved in metastasis, angiogenesis inhibitors, 
antisense technology, and G-quadruplexes.
G-quadruplexes are generally formed in DNA and RNA sequences contain-
ing repeated G-G-G-G called as G-tetrad. G-quadruplexes formed from 
planar stacking of hoogsteen bonded G-tetrads (1, 2) folded from a single 
G-rich sequence by intra- or inter-molecular association of 2 to 4 separate 
strands (3, 4). The core of G-quadruplexes are formed by the stacking of 
several G-tetrads and joined together by sugar phosphate backbone. The 
binding energy for this process arises from three main factors: hydrogen 
bonding between the guanines in a plane, π - π interaction between the 
guanines in adjacent planes and charge – charge interaction between 
partially negative oxygen of guanines and cations that typically sit in the 
octahedral position between the stacks (5-7). The monovalent cations 
such as K+ and Na+ at a physiological temperature and pH stabilize 

G-quadruplex by coordinating the carbonyl group of guanine at the center 
of G-tetrad core (5, 8). 
It has been estimated that there are more than 376,000 potential qua-
druplex sequences found in number of important biological processes 
(9). Intramolecular G-quadruplexes formed by single-stranded DNA are 
currently under intensive research due to their potential formation in 
telomeres and promoter sequences (10, 11). The present review reports 
the G-quadruplexes formed in human telomeres and proto-oncogenes. 

Telomere and telomerase
A simple, repeated DNA sequence of TTAGGG is found at the end of a linear 
chromosome called as the telomere. This DNA sequence caps the end of lin-
ear chromosomes (12). As DNA polymerase-α is not capable of completing 
the replication at the end of chromosomes so, telomerase acts by synthesiz-
ing and adding telomeric repeats to the end of chromosomes. Telomerase 
was discovered in 1985, through the ingenuity of Grieder and Blackburn (13, 
14). In 1994, it was discovered that cancer cells require telomerase for sur-
vival. In somatic cell, telomeres are progressively shorten with 20-200 base 
pairs per cell division during each replication cycle. This erosion of telomeric 
DNA observed both in vivo and in primary cell culture, (15-17) continuing up 
to a critical length of 8-10 kilobase pairs (18, 19). After reaching this crucial 
point, which is also known as the first mortality stage (M1), most of the 
cells go into senescence, i.e. exit from cell cycle. A mutation in the tumor 
suppressor gene P53 and/or the retinoblastoma protein (PRb) enables the 
cell to bypass M1 leading to the phase of extended life span (20, 21). At this 
stage, chromosomal instability continues until a second mortality stage (M2) 
or crisis has reached (22). In crisis average telomere lengths are 3-4Kb. The 
escape from the crisis is accomplished in two ways, either by reactivation of 
telomerase or by activation of telomerase restoration mechanism. This cel-
lular immortalization is a potentially rate-limiting step in carcinogenesis that is 
important for the continuing evolution of most advanced cancers (Figure 1) 
(15, 20). This finding supports that telomere erosion is an important signal 
for the aging of the cell leading to the induction of cellular senescence and 
cell death (12).
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Figure 1. Process of immortalization for cancer cells by senescence and crisis [19, 20].
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Human telomerase	
Human telomere consists of tandem repeats of six nucleotides TTAGGG 
which are repeated for 5-25 kilobase pairs, 5’-3’ towards the chromo-
some end (12). Mammalian telomerase is riboprotein consisting of 
the catalytic protein subunit, the protein component, and integral RNA 
component. The RNA component of human telomerase is about 445 
nucleotides in length, which acts as a template for the synthesis of telo-
meric repeats (23). The protein domain (hTERT), homologous to reverse 
transcriptase (24-29), catalyses nucleotide polymerization (30, 31).

Role of telomerase in cancer progression
Telomerase activity is absent in normal cells, but is detected in more 
than 85% of cancer cells (32, 33). This observation implies a role of 
telomerase in cancer progression. Telomerase is necessary for sustained 
cell proliferation that characterizes the cancer (34-38). This is supported 
by the observation that early stage neuroblastomas have low telomerase 
activity (39). Other studies have suggested that telomerase activity is 
correlated with pathological stage (40, 41) or tumor aggressiveness (42). 
Thus, the lack of telomerase limits the growth of rapidly proliferating cells 
while the increase in telomerase permits indefinite proliferations. The end 
sequence of the telomere is guanines rich and is called as a G - tail. This 
G-tail is conserved feature of telomere and is essential for telomerase 
function (43-47). Due to the high concentration of guanines in G-tail, 
telomeres are able to form stable G-quadruplex structures as shown in 
Figure 2 (48). The G-quadruplexes are a secondary structures of DNA 
and affects telomerase function (49). These alternative structures are an 
obstacle for both semi-conservative and telomerase mediated replication 
and must be resolved prior to these events (48). Molecules that promote 
and stabilize the formation of G-quadruplexes could potentially block the 
action of telomerase on telomeres (50, 51).

C-myc
The c-myc gene is present on human chromosome 8q24. It is expressed 
in normal cell by external signals such as growth factor and extracel-
lular matrix contacts. An abnormal expression of c-myc in primary cells 
activates a protective pathway through induction of p19/p14ARF and 
a p53 dependent cell death pathway. Thus, normal cells, which over 
express c-myc are eliminated through apoptosis. Activation of c-myc 
gene, contribute to the development of human cancer. C-myc promotes 
cell proliferation and genomic instability by accelerating cells through G1 
and S phase of the cell cycle. C-myc activates the telomerase hTERT 
which leads to the immortalization of cells (52). Over expression of c-myc 
proto-oncogene is associated with a broad spectrum of human cancers, 
including colon, breast, prostate, cervical and lung carcinomas, osteo-
sarcoma, lymphomas and leukemias (53-61). C-myc over expression 
can be caused by different mechanism, including gene amplification, (62, 
63) translocation (64-66), and simple up regulation of transcription(53, 
67). The G-rich strand of the c-myc NHE III, is 27-nt long segment 
(mycPu27) comprised of five consecutive runs of guanines (68). The 
c-myc region between -142 and -115 from the P1 promoter controls 
80-90% of transcription and harbor a polypurine-polypyrimidine motifs 
that extrudes a G-quadruplex structure involved in transcription regulation 

(69). The major G-quadruplex in c-myc promoter is myc-2345 (Figure 
2) having four loop isomers (68, 70). As the G-quadruplex is associated 
with polypurine-polypuridine tracts, it is important element as an on/off 
switch in regulatory regions of DNA (71). This inherently quite different 
molecular reorganization properties associated with duplex DNA makes it 
an attractive molecular target for the design of small molecules to selec-
tively interfere with oncogenes expression (72, 73).

C-myb
The c-myb is a proto-oncogene, which encodes a critical transcription 
factor for proliferation, differentiation and survival of hematopoietic pro-
genitor cells (74). The c-myb is over expressed in many leukemias and 
some solid tumors. It plays a critical role in leukemogenesis in maintain-
ing cells in proliferative state and prevents terminal differentiation (75, 
76). The c-myb promoter contains a purines rich region with 3 copies 
of 4 GGA repeats, (3 [GGA] 4), located 17 base pairs downstream of 
the transcription initiation site on bottom strand. The c-myb promoter 
can form an unusual secondary structure related to guanine tetrad (T) 
stacked onto guanine habitat (H) (77, 78). This unique quadruplex 
was the first G-quadruplex structure with pseudo-double chain reversal 
loop. DNA sequence with the two adjacent (GCA) 4 units can form a 
very stable higher ordered structure by intramolecular stacking to two 
T: H G-quadruplexes on the heptad plane resulting in T: H: H: T DNA 
structure (Figure 2) (79, 80). The relative orientation of DNA strands in 
G-quadruplexes were deduced by CD spectroscopy (81). The GGA repeat 
in gene promoter was the critical transcriptional activator binding site 
essential for c-myb promoter activity (82, 83). This specifies that a GGA 

Figure 2. Schematic structures of G-quadruplexes. (i) Tetrameric parallel-stranded G-quadruplex observed for the single-
repeat human telomeric sequences TTAGGG and TTAGGGT in K+ solution. (ii) Dimeric parallel-stranded G-quadruplex 
observed for the two-repeat human telomeric sequence TAGGGTTAGGGT in K+ solution. (iii) Dimeric antiparallel 
stranded G-Quadruplex observed for two-repeat human telomeric sequence TAGGGTTAGGGT in K+ solution. (iv) 
Schematic drawing of the folding topology of the major c-myc G-quadruplex in K+ solution. (v) c-myb (GGA)4 forms 
a T:H and two T:Hs, intermolecularly dimerize to form a T:H:H:T G-quadruplex. (vi) The folding topology G-quadruplex 
for c-KIT 1 sequence d(5′-AGGGAGGGCGCTGGGAGGAGGG-3′) between −87 and −109 base pairs upstream from the 
transcription start site of the human c-kit gene (3,45,65,67,76-77,89,91).
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repeat region have to be available for transcriptional activators to bind 
to the promoter. G-quadruplex formation, stabilized by small molecules, 
could also markedly inhibit c-myb expression, making the region unavail-
able for transcriptional factor binding (84, 85).

C-kit
The C-kit is a type-3 receptor tyrosine kinase, which is characterized 
by five extra cellular immunoglobin like domain and an intracellular split 
tyrosine kinase domain (86, 87). The c-kit proto-oncogene encodes a 
tyrosine kinase receptor for the growth promoting cytokine stem cell 
factor (SCF), which plays an important role in the control of differentia-
tion (88, 89). The c-kit protein plays a role in oncogenic transformation 
of certain cell types and are found in several highly malignant human 
cancers such as gastrointestinal stromal tumors (GIST), in which majority 
of the GIST cell contains activating mutations in c-kit (90, 91). The c-kit 
promoter has two non-overlapping quadruplex motifs (4, 92, 93). A 22 
base g-rich sequence between -87 and -109 base pairs upstream from 
the transcription site of human c-kit gene, has been shown to fold into a 
quadruplex as in fig. 2 (c-kit-1) (4, 92, 94). A second g-rich sequence is 
situated -140 to -160 base pairs upstream from the transcription start site 
represented in fig. 3 (c-kit 2). The formation of G-quadruplexes at both 
sites was demonstrated by H-NMR, CD, and UV spectroscopy (90, 93).

KRAS
The KRAS gene is located in chromosome 12, and encodes for a 
21kDa protein, p21RAS, which is anchored to the inner surface of the 
plasma membrane and act as molecular switch (95). The endogenous 

expression of an oncogenic KRAS allele in the mouse pancreas initiates 
the development of pancreatic ductal adenocarcinoma (95). Strategies 
aiming suppression of KRAS expression (96) or activation of RAS protein 
(97) have been proposed. Polypurine-polypyrimidine motifs are simple 
repeats distributed through the eukaryotic genome (98). These motifs are 
located in the KRAS promoter between -327 and -296 in human, -318 
and -290 in mouse (99, 100). The anti KRAS activity of the endogenous 
TFO correlates with its ability to assume a G-quadruplex that recognized a 
nucleus protein binding to the NHPPE duplex (96, 101). The purine strand 
of NHPPE, located in the proximal promoter sequence of KRAS is able to 
form G-quadruplex (Figure 3) (69). The transfection experiments showed 
that the stabilization of the KRAS G-quadruplex with cationic porphyrin 
TMPyP4 results in a strong inhibition of KRAS transcription (69). The 
quadruplexes formed in the mouse and human promoter is characterized 
through electrophoretic mobility shift assay (EMSA), circular dichroism 
(CD), chemical probing with DMS/piperidine and polymerase stop assays 
(69).

Neuroblastoma RAS viral oncogene homolog (NRAS)
The neuroblastoma RAS viral oncogene homolog (NRAS) encoded protein 
p21 mediate both signal transduction across the cell membrane and the 
intracellular signaling pathway responsible for cell proliferation and dif-
ferentiation (102). A mutation in the coding region of NRAS is responsible 
for increased cell proliferation (103). The G-quadruplex forming sequence 
in the 5’ UTR of the human NRAS proto-oncogene mRNA was found 
(104). It is 254 nucleotides long NRAS 5’ UTR containing NRAS RNA 
G-quadruplex (NRQ) motif, located 14 nucleotides downstream of the 5’ 
cap and 222 nucleotide upstream of the translocation start site (105). The 
configuration of RNA quadruplex NRQ folds into stable quadruplex was 
done by CD spectroscopy (104). Therefore, inhibition of the expression 
of oncogenic NRAS can be one of the potential therapeutic strategies.

Vascular endothelial growth factor (VEGF)
The proximal promoter region of the human vascular endothelial growth 
factor (VEGF) gene contains a polypurine /polypyrimidine tract that 
serves as multiple binding sites for Sp1 and Egr 1 transcription factor. 
This tract contains a guanines rich sequence consisting of 4 runs of 
three or more contiguous guanines separated by one or more bases 
(106-108) corresponding to be general motifs for the formation of inter-
molecular G-quadruplex. Starving tumor cells can become angiogenic 
by gaining the ability to direct the formation of new blood vessels for 
their survival (109, 110). The angiogenic switch in cancer cell is often 
initiated by increased expression of vascular endothelial growth factor 
(VEGF). The VEGF is pluripotent cytokinine and angiogenic growth fac-
tor consisting two identical subunits that bind to VEGF receptor on the 
surface of endothelial cells (111). The interaction of VEGF with receptor 
stimulates the proliferation, migration, survival, and permeability of 
endothelial cells, resulting in the formation of new blood vessels (112). 
The human VEGF promoter region contains binding sites for several 
transcriptional factors such as HIF-1, AP-1, AP-2, Egr-1, SP1 and many 
others (113, 114). It is revealed that the proximal 36 base pair region is 
essential for inducible VEGF promoter activity in several human cancer 

Figure 3. Schematic structures of G-quadruplexes. (i) Parallel quadruplex c-kit 2 sequence, d (5′- CGGGCGGGCGCGAGGGAGGGG-3′), 
situated −140 to −160 base pairs upstream from the transcription start site. (ii) The KRAS G-quadruplex structure based on DMS 
footprinting, CD, electrophoretic mobility, and polymerase stop assays. (iii) Schematic drawing of the folding topology of the bcl2 
quadruplex sequence containing the middle four consecutive runs of guanines, which forms the most stable G-quadruplex structure. 
(iv) Representation of the Rb quadruplex structure adopted by d (CGGGGGGTTTTGGGCGGC) (66, 87, 90, 129, 123,)
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cells (113, 114). The polypurine tract of the VEGF promoter consists 
of five runs of at least three contiguous guanines separated by one or 
more bases capable of forming quadruplex structures. The formation of 
the G-quadruplexes from these G-rich sequences in the human VEGF 
promoter were confirmed by NMR, CD spectroscopy, X-ray crystal-
lography (106).

Bcl-2
Bcl-2 is potent oncoprotein that plays an essential role in survival and 
functions as an inhibitor of cell apoptosis (115). It was first discovered 
in human follicular lymphoma (116). Bcl-2 is over expressed in a wide 
range of human tumors, including B-cell and T-cell lymphoma, breast, 
prostate, cervical, colorectal and non-small lung carcinomas (117). The 
p1 promoter located 1386-1423 base pairs upstream of the transloca-
tion site is the major transcriptional promoter for bcl-2 (118). This is GC 
rich promoter located 58 to 19 base pairs upstream of the p1 promoter 
with 39 base pair sequence (118). This GC rich element (bcl2pu39) 
contains six runs of guanines each forming a mixture of these distinct 
intramolecular G-quadruplexes in K+-containing solution (Fig. 3) (119). 
The structure of these major G-quadruplexes was confirmed by NMR and 
biochemical studies (119, 120). These major G-quadruplexes in the bcl-2 
promoter represents an important target for designing of new anticancer 
drug that specifically binds these structures and modulates bcl-2 gene 
expression (120).

The retinoblastoma (Rb) gene
The retinoblastoma (Rb) gene encodes nuclear phosphoproteins, which 
act as a tumor suppressor by affecting the cell cycle. The control of 
this pathway is disturbed in all human cancers (121, 122). Xu et al. 
demonstrated that the regions at the 5’ termini of Rb gene sequence are 
extremely rich in G and C residues (123, 124). The result of their study 
shows that G-strand at the 5’ terminus of Rb gene is capable of forming 
G-quadruplex in vitro and encumbers the progress of DNA polymerase. 
This indicates a possible role for the quadruplex structures in Rb gene 
(Figure 3) (125). 

Conclusion
The biological significance of G-quadruplexes has been recognized by 
numerous research efforts. It appears to be the next great hope in a 
long line of promising targets. With the advancement of x-ray crystal-
lography, CD, and NMR spectroscopy studies, the structure and topology 
of G-quadruplexes have become clearer than before. As there are many 
G-rich regions along chromosomes and some of these are associated 
with the promoter of oncogenes. This provides opportunities to target 
telomeric and oncogene promoter sequences of G-quadruplexes using 
quadruplex binding ligands.
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